Mathematischer Brückenkurs

DR. ANTON MALEVICH

Aufgabe 9.1 Beweisen Sie die folgenden Aussagen mittels Induktion.

a)
$$\sum_{k=0}^{n} 2^k = 2^{n+1} - 1$$
 für alle $n \in \mathbb{N}$,

b)
$$\sum_{k=1}^{n} k(k+1) = \frac{n(n+1)(n+2)}{3} \text{ für alle } n \in \mathbb{N},$$

c)
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$
 für alle $n \in \mathbb{N}$

- d) $4n^3 n$ ist für alle $n \in \mathbb{N}$ durch 3 teilbar,
- e) $n^3 n$ ist für alle $n \in \mathbb{N}$ durch 6 teilbar,
- f) $5^n + 7$ ist für alle $n \in \mathbb{N}$ durch 4 teilbar,
- g) Die Zahl $3^{2n+1} + 2^{n-1}$ ist für alle $n \in \mathbb{N}$ durch 7 teilbar.

h#) $2^n > n^2 - 1$ für alle $n \in \mathbb{N}$.

 $Aufgabe^{\#}$ 9.2 Eine Pizza wird durch n Geraden in Stücke geschnitten. Die Schnitte können beliebig verlaufen. Wie viele Pizzastücke können höchstens entstehen? Stellen Sie eine Vermutung auf und beweisen Sie diese mit Induktion.

Aufgabe 9.3 Berechnen Sie (wählen Sie passende a, b im binomischen Lehrsatz):

a)
$$\sum_{k=0}^{8} {8 \choose k}$$
,

c)
$$\sum_{k=0}^{8} {8 \choose k} 2^k$$
,

e)
$$\sum_{k=0}^{n} \binom{n}{k},$$

b)
$$\sum_{k=0}^{8} {8 \choose k} (-1)^k$$
, d) $\sum_{k=0}^{10} {10 \choose k}$,

d)
$$\sum_{k=0}^{10} {10 \choose k}$$
,

f)
$$\sum_{k=0}^{n} \binom{n}{k} (-1)^k.$$

Aufgabe 9.4 Aus 16 Karten (je 4 Buben, Damen, Könige und Asse) werden 8 gezogen. Bestimmen Sie die Wahrscheinlichkeit, dass darunter (i) genau 1 Ass, (ii) kein Ass, (iii) mindestens 2 Asse, (iv) genau ein Bube, eine Dame, ein König und ein Ass sind.

Aufgabe 9.5

- a) Keine drei Diagonalen eines convexen 10-Ecks schneiden sich in einem Punkt. Wie viele Schnittpunkte der Diagonalen gibt es?
- b) Wie viele verschiedene "Wörter" (bzw. Kombinationen) kann man aus folgenden Buchstaben kostruieren:
 - (i) ABERZ; (ii) EEGHN; (iii) BEEENTT; (iv) ABRAKADABRA?
- c) Das Eishockey-Team besteht aus 2 Torwarten, 7 Verteidigern und 10 Angreifern. Wie viele Möglichkeiten hat der Trainer, die Anfangssechs (bestehend aus 1 Torwart, 2 Verteidigern und 3 Angreifern) zu stellen?
- d) Wie viele Möglichkeiten gibt es, 28 Spielkarten unter 7 Spieler zu verteilen?
- e) Wie viele Möglichkeiten gibt es, 9 Bücher in 5 Pakete zu verteilen, falls 4 der Pakete genau 2 Bücher enthalten sollen.